Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli

Publication Year
2001

Type

Journal Article
Abstract

The periplasm of Escherichia coli contains many proteins proposed to have redundant functions in protein folding. Using depletion analysis, we directly demonstrated that null mutations in skp and surA, as well as in degP and surA, result in synthetic phenotypes, suggesting that Skp, SurA, and DegP are functionally redundant. The Deltaskp surA::kan combination has a bacteriostatic effect and leads to filamentation, while the degP::Tn10 surA::kan combination is bactericidal. The steady-state levels of several envelope proteins are greatly reduced upon depletion of a wild-type copy of surA in both instances. We suggest that the functional redundancy of Skp, SurA, and DegP lies in the periplasmic chaperone activity. Taken together, our data support a model in which the periplasm of E. coli contains parallel pathways for chaperone activity. In particular, we propose that Skp and DegP are components of the same pathway and that SurA is a component of a separate pathway. The loss of either pathway has minimal effects on the cell, while the loss of both pathways results in the synthetic phenotypes observed.

Journal
J Bacteriol
Volume
183
Issue
23
Pages
6794-800
Date Published
12/2001
ISSN Number
0021-9193
Alternate Journal
J Bacteriol
PMID
11698367