The Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling

Publication Year
2018

Type

Journal Article
Abstract

The outer membrane (OM) bilayer of Gram-negative bacteria is biologically unique in its asymmetrical organization of lipids, with an inner leaflet composed of glycerophospholipids (PLs) and a surface-exposed outer leaflet composed of lipopolysaccharide (LPS). This lipid organization is integral to the OM's barrier properties. Perturbations of the outer leaflet by antimicrobial peptides or defects in LPS biosynthesis or transport to the OM cause a compensatory flipping of PLs to the outer leaflet. As a result, lipid asymmetry is disrupted and OM integrity is compromised. Recently, we identified an mutant that exhibits aberrant accumulation of surface PLs accompanied by a cellular increase in LPS production. Remarkably, the observed hyperproduction of LPS is PldA dependent. Here we provide evidence that the fatty acids generated by PldA at the OM are transported into the cytoplasm and simultaneously activated by thioesterification to coenzyme A (CoA) by FadD. The acyl-CoAs produced ultimately inhibit LpxC degradation by FtsH. The increased levels of LpxC, the enzyme that catalyzes the first committed step in LPS biosynthesis, increases the amount of LPS produced. Our data suggest that PldA acts as a sensor for lipid asymmetry in the OM. PldA protects the OM barrier by both degrading mislocalized PLs and generating lipid second messengers that enable long-distance signaling that prompts the cell to restore homeostasis at a distant organelle. The outer membrane of Gram-negative bacteria is an effective permeability barrier that protects the cell from toxic agents, including antibiotics. Barrier defects are often manifested by phospholipids present in the outer leaflet of this membrane that take up space normally occupied by lipopolysaccharide. We have discovered a signaling mechanism that operates across the entire cell envelope used by the cell to detect these outer membrane defects. A phospholipase, PldA, that functions to degrade these mislocalized phospholipids has a second, equally important function as a sensor. The fatty acids produced by hydrolysis of the phospholipids act as second messengers to signal the cell that more lipopolysaccharide is needed. These fatty acids diffuse across the periplasm and are transported into the cytoplasm by a process that attaches coenzyme A. The acyl-CoA molecule produces signals to inhibit the degradation of the critical enzyme LpxC by the ATP-dependent protease FtsH, increasing lipopolysaccharide production.

Journal
mBio
Volume
9
Issue
2
Date Published
03/2018
ISSN Number
2150-7511
Alternate Journal
mBio
PMID
29559571